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Abstract

We isolate a class of smooth rational cubic fourfolds X containing a plane whose as-
sociated quadric surface bundle does not have a rational section. This is equivalent to
the nontriviality of the Brauer class β of the even Clifford algebra over the K3 surface
S of degree 2 arising from X. Specifically, we show that in the moduli space of cubic
fourfolds, the intersection of divisors C8 ∩ C14 has five irreducible components. In the
component corresponding to the existence of a tangent conic, we prove that the general
member is both pfaffian and has β nontrivial. Such cubic fourfolds provide twisted de-
rived equivalences between K3 surfaces of degrees 2 and 14, hence further corroboration
of Kuznetsov’s derived categorical conjecture on the rationality of cubic fourfolds.

Introduction

Let X be a cubic fourfold, that is, a smooth cubic hypersurface X ⊂ P5 over the complex
numbers. Determining the rationality of X is an open problem in algebraic geometry. Some
classes of rational cubic fourfolds have been described by Fano [Fan43], Tregub [Tre84, Tre93],
and Beauville–Donagi [BD85]. In particular, pfaffian cubic fourfolds, defined by pfaffians of
skew-symmetric 6×6 matrices of linear forms in P5, are rational; see [BD85, Prop. 5(ii)]. A cubic
fourfold is pfaffian if and only if it contains a quintic del Pezzo surface; see [Bea00, Prop. 9.2 a)].

Hassett [Has00] describes, via lattice theory, Noether–Lefschetz divisors Cd in the moduli
space C of cubic fourfolds, defined by the existence of 2-cycles not equivalent to a 2-dimensional
linear section. For example, C14 is the closure of the locus of pfaffian cubic fourfolds and C8 is the
locus of cubic fourfolds containing a plane. Certain of the divisors Cd consist of cubic fourfolds X
whose nonspecial cohomology is isomorphic to a Tate twist of the primitive middle cohomology
of a polarized K3 surface S of degree d; see [Has00, Thm. 1.0.2]. Such a K3 surface S is said
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to be associated with X. A natural suspicion, supported by Hassett’s work [Has00, Has99], is
that any rational cubic fourfold ought to have an associated K3 surface. For example, pfaffian
cubic fourfolds have associated K3 surfaces of degree 14. Hassett [Has99, Thm. 4.2] identifies
countably many divisors of C8 consisting of cubic fourfolds containing a plane whose Clifford
invariant is trivial, implying rationality. Though lacking an associated K3 surface of degree 8,
such cubic fourfolds do have associated K3 surfaces of other degrees. The work of Hassett and
Tschinkel [HT01, § 7] highlights the important role of effectivity of 2-cycles in such rationality
considerations. While it is expected that the general cubic fourfold (and the general cubic fourfold
containing a plane) is nonrational, at present not a single cubic fourfold is provably nonrational.

In this work, we study rational cubic fourfolds in C8 ∩ C14 with nontrivial Clifford invariant,
hence not contained in the divisors of C8 described by Hassett. Let A(X) be the lattice of algebraic
2-cycles on X up to rational equivalence and let dX be the discriminant of the intersection form
on A(X). Our main result is a complete description of the irreducible components of C8 ∩ C14.

Theorem A. The intersection of Noether–Lefschetz divisors C8∩C14 in the moduli space of cubic
fourfolds has five irreducible components indexed by the discriminant dX ∈ {21, 29, 32, 36, 37} of
a general member X. The Clifford invariant of a general cubic fourfold X in C8 ∩ C14 is trivial if
and only if dX is odd. Finally, the pfaffian locus is dense in the dX = 32 component.

In particular, the general cubic fourfold in the dX = 32 component of C8 ∩C14 is rational and
has nontrivial Clifford invariant; the existence of such a component substantiates an unproven
assertion of Hassett [Has99, Rem. 4.3]. We also provide a geometric description of this component:
its general member has a tangent conic to the sextic discriminant curve of the associated quadric
surface bundle (see Proposition 6).

More recently, Kuznetsov [Kuz10] has established a semiorthogonal decomposition of the
bounded derived category Db(X) = 〈AX ,OX ,OX(1),OX(2)〉. The category AX is essentially a
noncommutative deformation of the derived category of a K3 surface. Based on evidence from
known cases, as well as general categorical considerations, Kuznetsov conjectures that a cubic
fourfold is rational if and only if there is an equivalence AX ∼= Db(S) for some K3 surface S.

Shortly after the first version of this article appeared, Addington and Thomas [AT12] an-
nounced a groundbreaking result linking the Hodge-theoretic suspicion supported by Hassett’s
work and the derived categorical conjecture of Kuznetsov, at least for general cubic fourfolds.

If X contains a plane, the projection from that plane makes X birational to the total space
of a quadric surface bundle X̃ → P2 whose discriminant D ⊂ P2 is a sextic curve. Assuming
that D is smooth, the double cover S → P2 branched along D is a K3 surface of degree 2 and
the even Clifford algebra gives a Brauer class β ∈ Br(S), called the Clifford invariant of X.
In [Kuz10, Thm. 4.3], Kuznetsov establishes an equivalence AX ∼= Db(S, β) with the bounded
derived category of β-twisted sheaves on S.

By classical results in the theory of quadratic forms (see [KPS86, Thm. 6.3]), β is trivial if
and only if the quadric surface bundle X̃ → P2 has a rational section (see also [Has99]), in which
case X is rational. On the divisors of C8 described by Hassett, β ∈ Br(S) is trivial and Kuznetsov’s
conjecture is verified. However, there is no example in the literature with β nontrivial and for
which there nevertheless exist a different K3 surface S′ and an equivalence Db(S, β) ∼= Db(S′)
explaining the rationality of X. One application of our results is the existence of such examples.

Corollary B. Let X be a general member of the dX = 32 component of C8 ∩ C14. Then there
exist a K3 surface S′ of degree 14 and a nontrivial twisted derived equivalence Db(S, β) ∼= Db(S′).
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The existence of such cubic fourfolds is not a priori clear. First, while the locus of pfaffian
cubic fourfolds is dense in C14, it is not true that the locus of pfaffians containing a plane is
dense in (all components of) C8 ∩ C14. As for the general study of quadric bundles over surfaces,
there do exist conic bundles over surfaces, without rational sections, whose total space is smooth
projective rational: these are classified over rational minimal surfaces [Sho84] (see also [BB13]);
over P2 their discriminant curves have degree at most five [Bea77]. However, there is no analogous
classification of quadric surface bundles over surfaces with smooth projective rational total space
and without rational sections. Indeed, there do not even exist any explicit examples in the
literature. Our results provide such examples arising from cubic fourfolds containing a plane.

The structure of this paper is as follows. In § 1, we study Hodge-theoretic and geometric
conditions for the nontriviality of the Clifford invariant (see Proposition 2 and Corollary 3).
In § 2, we analyze the irreducible components of C8 ∩ C14, proving the first two statements of
Theorem A. Throughout, we use the work of Looijenga [Loo09] and Laza [Laz10], as adapted by
Mayanskiy [May11], on the realizability of lattices of algebraic cycles on a cubic fourfold. In § 3,
we recall some elements of the theory of homological projective duality and prove Corollary B.
Finally, in § 4, we prove the final statement of Theorem A, that the pfaffian locus is dense in
the dX = 32 component of C8 ∩ C14, by expliciting a single point in the intersection. For the
verification, we are aided by Magma [BCP93], adapting some of the computational techniques
developed in [HVV11].

1. Nontriviality criteria for Clifford invariants

In this section, by means of straightforward lattice-theoretic calculations, we describe a class of
cubic fourfolds containing a plane with nontrivial Clifford invariant.

If (H, b) is a Z-lattice and A ⊂ H is a sublattice, then the orthogonal complement
A⊥ = {v ∈ H : b(v,A) = 0} is a saturated sublattice (that is, A⊥ = A⊥⊗ZQ∩H) and is thus a
primitive sublattice (in other words, H/A⊥ is torsion free). Denote by d(H, b) ∈ Z the discrimi-
nant, that is, the determinant of a Gram matrix.

Let X be a smooth cubic fourfold over C. The integral Hodge conjecture holds for X (by
[Voi07b, Thm. 18], following [Mur77] and [Zuc77]) and we denote by A(X) = H4(X,Z)∩H2,2(X)
the lattice of integral middle Hodge classes; it coincides with the Chow group of codimension 2
cycles up to rational equivalence.

Now suppose that X contains a plane P and let π : X̃ → P2 be the quadric surface bundle
defined by blowing up and projecting away from P . Let C0 be the even Clifford algebra of π; see
[Kuz08] or [ABB13, § 1.5]. We call the plane P good if π has simple degeneration, that is, the
fibers of π have at most isolated singularities. This is equivalent to X not containing another
plane intersecting P ; see [Voi86, § 1 Lemme 2]. This is also equivalent to the smoothness of the
discriminant divisor D ⊂ P2 (see [ABB13, Prop. 1.2.5]), which is sextic curve. In this case, the
discriminant cover f : S → P2 branched along D is a smooth K3 surface of degree 2, and C0

defines an Azumaya quaternion algebra over S; see [Kuz08, Prop. 3.13]. We refer to the Brauer
class β ∈ Br(S)[2] of C0 as the Clifford invariant of X.

Let h ∈ H2(X,Z) be the hyperplane class defined by the embedding X ⊂ P5. The tran-
scendental lattice T (X), the nonspecial cohomology lattice K, and the primitive cohomology
lattice H4(X,Z)0 are the orthogonal complements (with respect to the cup product polarization
bX) of A(X), 〈h2, P 〉, and 〈h2〉 inside H4(X,Z), respectively. Thus T (X) ⊂ K ⊂ H4(X,Z)0,
with T (X) = K for a very general cubic fourfold containing a plane; see the proof of [Voi86,
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§ 1 Prop. 2]. There are polarized Hodge structures on T (X), K, and H4(X,Z)0 by restricting
from H4(X,Z).

Similarly, let S be a smooth integral projective surface over C and let NS(S) = H2(S,Z) ∩
H1,1(S) be its Néron–Severi lattice. Let h1 ∈ NS(S) be a fixed anisotropic class. The transcenden-
tal lattice T (S) and the primitive cohomology H2(S,Z)0 are the orthogonal complements (with
respect to the cup product polarization bS) of NS(S) and 〈h1〉 inside H2(S,Z), respectively. If
f : S → P2 is a double cover, then we take h1 to be the class of f∗OP2(1).

Let F (X) be the Fano variety of lines in X and let W ⊂ F (X) be the divisor consisting of the
lines meeting P . Then W is identified with the relative Hilbert scheme of lines in the fibers of π.

Its Stein factorization W
p−→ S

f−→ P2 displays W as a smooth conic bundle over the discriminant
cover. The Abel–Jacobi map

Φ : H4(X,Z)→ H2(W,Z)

is an isomorphism of Q-Hodge structures Φ : H4(X,Q)→ H2(W,Q)(−1); see [Voi86, § 1 Prop. 1].
Finally, there is an injective (see [Voi07a, Lemma 7.28]) morphism p∗ : H2(S,Z)→ H2(W,Z) of
polarized Hodge structures. Voisin [Voi86, § 1 Prop. 2] proves that Φ(K) ⊂ p∗H2(S,Z)0(−1) is
a polarized Hodge substructure of index 2. Here, the Tate twist (−1) increases the weight by 2
and changes the sign of the bilinear form. We have the following amplification.

Proposition 1. Let X be a smooth cubic fourfold containing a good plane. Then we have that
Φ(T (X)) ⊂ p∗T (S)(−1) is a polarized Hodge substructure of index ε dividing 2. In particular,
rkA(X) = rk NS(S) + 1 and d(A(X)) = 22(ε−1)d(NS(S)).

Proof. Using [Voi86, § 1 Lemme 3] it is not hard to check that Φ(T (X)) ⊂ p∗T (S)(−1); it remains
to compute the index of this inclusion. Since T (X) ⊂ K and T (S)(−1) ⊂ H2(S,Z)0(−1) are
saturated (hence primitive) sublattices, an application of the snake lemma shows that

p∗T (S)(−1)/Φ(T (X)) ⊂ p∗H2(S,Z)0/Φ(K) ∼= Z/2Z ,

hence the index of Φ(T (X)) in p∗T (S)(−1) divides 2.

We now verify the final claims. We have rkK = rkH2(X,Z) − 2 = rkT (X) + rkA(X) − 2
and rkH2(S,Z)0 = rkH2(S,Z)−1 = rkT (S) + rk NS(S)−1 (since P , h2, and h1 are anisotropic
vectors), while rkK = rkH2(S,Z)0 and rkT (X) = rkT (S) by [Voi86, § 1 Prop. 2] and the above,
respectively. The discriminant calculation follows from standard lattice theory.

If S has Picard rank 1, then X has no associated K3 surface in the sense of Hassett. Thus, if
we are looking for rational cubic fourfolds, we must consider S with Picard rank at least 2. Let
Q ∈ A(X) be the class of a fiber of π : X̃ → P2. Then P +Q = h2; see [Voi86, § 1].

Proposition 2. Let X be a smooth cubic fourfold containing a good plane P . If A(X) has
rank 3 and even discriminant (for example, if the K3 surface S of degree 2 has Picard rank 2
and even Néron–Severi discriminant) then the Clifford invariant β ∈ Br(S) of X is nontrivial.

Proof. The Clifford invariant β ∈ Br(S) of the quadric surface bundle π : X̃ → P2 is trivial if and
only if π has a rational section; see [KPS86, Thm. 6.3] or [Sch85, 2 Thm. 14.1 and Lemma 14.2].
Such a section exists if and only if there exists an algebraic cycle R ∈ A(X) such that R.Q = 1;
see [Has99, Thm. 3.1] or [Kuz10, Prop. 4.7].

Suppose that such a cycle R exists and consider the sublattice 〈h2, Q,R〉 ⊂ A(X). It is
straightforward to see that its intersection form has a Gram matrix whose determinant is con-
gruent to 5 modulo 8 for any possible choice of R (see [Has99, Lemma 4.4]), so this lattice cannot
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be a finite index sublattice of A(X), which has even discriminant by hypothesis. Hence no such
2-cycle R exists and thus β is nontrivial. The claim follows from Proposition 1.

We now provide an explicit geometric condition for the nontriviality of the Clifford invariant,
which will be necessary in § 4. We say that a cubic fourfold X containing a plane has a tangent
conic if there exists a conic C ⊂ P2 everywhere tangent to the discriminant curve D ⊂ P2 of the
associated quadric surface bundle.

Corollary 3. Let X be a smooth cubic fourfold containing a good plane. If X has a tangent
conic and the K3 surface S has Picard rank 2, then the Clifford invariant β ∈ Br(S) of X is
nontrivial.

Proof. Consider the pull back of the cycle class of C to S via the discriminant double cover
f : S → P2. Then f∗C has two components C1 and C2. The sublattice of NS(S) generated by
h1 = f∗OP2(1) = (C1 +C2)/2 and C1 has discriminant −8. As S has Picard rank 2, the classes h1

and C1 generate NS(S) (see [EJ08, § 2] for further details). Now apply Proposition 2.

2. The Clifford invariant on C8 ∩ C14

In this section, we first prove that C8 ∩ C14 has five irreducible components and we describe
each of them in lattice-theoretic terms. We then completely analyze the (non)triviality of the
Clifford invariant of the general cubic fourfold (that is, such that A(X) has rank 3) in each
irreducible component. One of the components corresponds to cubic fourfolds containing a plane
and having a tangent conic (that is, those considered in Corollary 3), where we already know
the nontriviality of the Clifford invariant. Another component corresponds to cubic fourfolds
containing two disjoint planes, where we already know the triviality of the Clifford invariant.
There are another two components of C8 ∩ C14 whose general elements have trivial Clifford
invariant (see Proposition 5).

A cubic fourfold X is in C8 or C14 if and only if A(X) has a primitive sublattice K8 = 〈h2, P 〉
or K14 = 〈h2, T 〉. This follows from the definition of Cd and because for any d 6≡ 0 mod 9 there
is a unique lattice (up to isomorphism) of rank 2 that represents 3 and has discriminant d.

Thus a cubic fourfold X in C8 ∩ C14 has a sublattice 〈h2, P, T 〉 ⊂ A(X) with Gram matrix

h2 P T
h2 3 1 4
P 1 3 τ
T 4 τ 10

(1)

for some τ ∈ Z depending on X. There may be a priori restrictions on the possible values of τ .

Denote by Aτ the lattice of rank 3 whose bilinear form has Gram matrix (1). We will write
Cτ = CAτ ⊂ C for the locus of smooth cubic fourfolds such that there is a primitive embedding
Aτ ⊂ A(X) of lattices preserving h2. If nonempty, each Cτ is a subvariety of codimension 2 by a
variant of the proof of [Has00, Thm. 3.1.2].

We will use the work of Laza [Laz10], Looijenga [Loo09], and Mayanskiy [May11, Thm. 6.1] to
classify exactly which values of τ are supported by cubic fourfolds. This proves the first assertion
in Theorem A.

Theorem 4. The irreducible components of C8∩C14 are the subvarieties Cτ for τ ∈ {−1, 0, 1, 2, 3}.
Moreover, the general cubic fourfold X in Cτ satisfies A(X) ∼= Aτ .
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Proof. By construction, C8∩C14 is the union of Cτ for all τ ∈ Z. First, we determine the values of
τ for which the component Cτ is possibly nonempty. If X is a smooth cubic fourfold, then A(X)
is positive definite by the Riemann bilinear relations. Hence, to be realized as a sublattice of
some A(X), the lattice Aτ must be positive definite, which by Sylvester’s criterion is equivalent
to Aτ having positive discriminant. As d(Aτ ) = −3τ2 + 8τ + 32, the only values of τ making a
positive discriminant are −2,−1, 0, 1, 2, 3, 4.

Then, we prove that Cτ is empty for τ = −2, 4 by demonstrating roots (that is, primitive
vectors of norm 2) in Aτ,0 = 〈h2〉⊥ (see [Voi86, § 4 Prop. 1], [Loo09, § 2], or [Laz10, Def. 2.16]
for details on roots). Indeed, the vectors (1,−3, 0) and (0,−4, 1) form a basis for Aτ,0 ⊂ Aτ ; for
τ = −2, we find short roots (−2, 2, 1) and (2,−10, 1); for τ = 4, we find short roots ±(1, 1,−1).
Hence Cτ is possibly nonempty only for τ ∈ {−1, 0, 1, 2, 3}. The corresponding discriminants
d(Aτ ) are 21, 32, 37, 36, 29.

For the remaining values of τ , we prove that Cτ is nonempty. To this end, we verify conditions
1)–6) of [May11, Thm. 6.1], proving that Aτ = A(X) for some cubic fourfold X. Condition 1) is
true by definition. For condition 2), letting v = (x,−3x− 4y, y) ∈ Aτ,0, we see that

b(v, v) = 2
(
12x2 + (36− 3τ)xy + (29− 4τ)y2

)
(2)

is even. For condition 5), letting w = (x, y, z) ∈ Aτ , we compute that

b(h2, w)2 − b(w,w) = 2
(
3x2 − y2 + z2 + 2xy + 8xz + (4− τ)yz

)
(3)

is even. For conditions 3)–4), given each of the five values of τ , we use standard Diophantine
techniques to prove the nonexistence of short and long roots of (2).

Finally, for condition 6), let qKτ : A∗τ/Aτ → Q/2Z be the discriminant form of (3), restricted
to the discriminant group A∗τ/Aτ of the lattice Aτ . Appealing to Nikulin [Nik79, Cor. 1.10.2],
it suffices to check that the signature satisfies sgn(qKτ ) ≡ 0 mod 8; see [May11, Rem. 6.3].
Employing the notation of [Nik79, Prop. 1.8.1], we compute the finite quadratic form qKτ in each
case:

τ −1 0 1 2 3

d(Aτ ) 21 32 37 36 29

A∗τ/Aτ Z/3Z× Z/7Z Z/2Z× Z/16Z Z/37Z Z/2Z× Z/2Z× Z/9Z Z/29Z
qKτ q3

1(3)⊕ q7
1(7) q2

3(2)⊕ q2
1(24) q37

θ (37) q2
3(2)⊕ q2

1(2)⊕ q3
1(32) q29

θ (29)

(4)

where θ represents a nonsquare class modulo the respective odd prime. In each case of (4), we
verify the signature condition using the formulas in [Nik79, Prop. 1.11.2].

Finally, for the five values of τ , we prove that Cτ is irreducible. As the rank of A(X) is
an upper-semicontinuous function on C, the general cubic fourfold X in C8 ∩ C14 has A(X) of
rank 3 (by the argument above), of which Aτ is a finite index sublattice for some τ . Each proper
finite overlattice B of Aτ such that B (along with its sublattices K8 and K14) is primitively
embedded into H4(X,Z) will give rise to an irreducible component of Cτ . We will prove that no
such proper finite overlattices exist. For τ ∈ {21, 37, 29}, the discriminant of Aτ is squarefree, so
there are no proper finite overlattices. In the case τ = 0, 2, we note that B0 = 〈h2〉⊥ is a proper
finite overlattice of the binary lattice Aτ,0 (as 〈h2〉 ⊂ B is assumed primitive). We then directly
compute that each such B0 has long roots (that is, vectors of norm 6 whose pairing with any
other vector is divisible by 3). Therefore, no such proper finite overlattices exist.

We now address the question of the (non)triviality of the Clifford invariant. This proves the
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second assertion of Theorem A.

Proposition 5. Let X be a general cubic fourfold in C8 ∩ C14 (so that A(X) has rank 3). The
Clifford invariant β ∈ Br(S) of X is trivial if and only if τ is odd.

Proof. If τ is odd then, as in the proof of Proposition 6, (P + T ).Q = −τ is odd, hence the
Clifford invariant β ∈ Br(S) is trivial by an application of the criteria in [Has99, Thm. 3.1] or
[Kuz10, Prop. 4.7] (see the proof of Proposition 2). If τ is even, then Ad = A(X) has rank 3 and
even discriminant, hence β is nontrivial by Proposition 2.

For τ = −1, the component Cτ consists of cubic fourfolds containing two disjoint planes; see
[Has00, 4.1.3]. We now give a geometric description of the general member of the component Cτ
for τ = 0 (that is, where dX = 32).

Proposition 6. Let X be a smooth cubic fourfold containing a good plane P and having a
tangent conic such that A(X) has rank 3. Then X is in the component Cτ for τ = 0.

Proof. Since X has a tangent conic and A(X) has rank 3, A(X) has discriminant 8 or 32
and X has nontrivial Clifford invariant by Proposition 1 and Corollary 3. As the sublattice
〈h2, P 〉 ⊂ A(X) is primitive, we can choose a class T ∈ A(X) such that 〈h2, P, T 〉 ⊂ A(X) has
discriminant 32. Adjusting T by a multiple of P , we can assume that h2.T = 4. Write τ = P.T .

Adjusting T by multiples of h2−3P keeps h2.T = 4 and adjusts τ by multiples of 8. A similar
trick is employed in [AT12, Prop. 4.2]. The discriminant being 32, we are left with two possible
choices (τ = 0, 4) for the Gram matrix of 〈h2, P, T 〉 up to isomorphism:

h2 P T
h2 3 1 4
P 1 3 0
T 4 0 10

h2 P T
h2 3 1 4
P 1 3 4
T 4 4 12

In these cases, we compute that K ∩ 〈h2, P, T 〉 (that is, the orthogonal complement of 〈h2, P 〉 in
〈h2, P, T 〉) is generated by 3h2−P−2T and h2+P−T and has discriminant 16 and 5, respectively.
We calculate that NS(S) ∩H2(S,Z)0 (that is, the orthogonal complement of 〈h1〉 in NS(S)) is
generated by h1−C1 and has discriminant −4 (see Corollary 3 for definitions). Arguing as in the
proof of Proposition 1, there is a lattice inclusion Φ(K ∩ 〈h2, P, T 〉) ⊂ NS(S) ∩ H2(S,Z)0(−1)
having index dividing 2, which rules out the second case above by comparing discriminants.

In Proposition 5, we isolate three classes of smooth cubic fourfolds X ∈ C8 ∩ C14 with trivial
Clifford invariant. While the component Cτ for τ = −1 is in the complement of the pfaffian locus
(see [Tre93, Prop. 1b]), we wonder if the pfaffian locus is dense in the other four components.

3. The twisted derived equivalence

Homological projective duality (HPD) can be used to obtain a significant semiorthogonal de-
composition of the derived category of a pfaffian cubic fourfold. As the universal pfaffian variety
is singular, a noncommutative resolution of singularities is required to establish HPD in this
case. A noncommutative resolution of singularities of a scheme Y is a coherent OY -algebra R
with finite homological dimension that is generically a matrix algebra (these properties trans-
late to “smoothness” and “birational to Y ” from the categorical language). We refer to [Kuz07]
for details on HPD. The following is a straightforward application of HPD for Grassmannians
([Kuz06]).
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Theorem 7. Let W be a C-vector space of dimension 6 and let Y ⊂ P(∧2W∨) be the universal
pfaffian cubic hypersurface. There exists a noncommutative resolution of singularities (Y,R)
that is HP dual to the Grassmannian Gr(2,W ). In particular, the bounded derived category of
a smooth pfaffian cubic fourfold X admits a semiorthogonal decomposition

Db(X) = 〈Db(S′),OX ,OX(1),OX(2)〉 ,

where S′ is a smooth K3 surface of degree 14. In particular, AX ∼= Db(S′).

Assuming Theorem A, we can now give a proof of Corollary B.

Proof of Corollary B. By Theorem A, X is a smooth pfaffian cubic fourfold containing a good
plane with nontrivial Clifford invariant β ∈ Br(S). Being pfaffian, X is rational. Let S′ be the K3
surface of degree 14 arising from Theorem 7 via projective duality. Then by [Kuz10, Thm. 4.3]
and Theorem 7, the category AX is equivalent to both Db(S, β) and Db(S′).

Remark 8. By [HS05, Rem. 7.10], given any K3 surface S and any nontrivial β ∈ Br(S), there is
no equivalence between Db(S, β) and Db(S). Thus any X as in Corollary B validates Kuznetsov’s
conjecture, but not via the K3 surface S. Moreover, S and S′ are twisted Fourier–Mukai partners:
by [CS07, Thm. 5.1], the equivalence Db(S, β) ∼= Db(S′) is a Fourier–Mukai functor whose kernel
is a β−1 � OS′-twisted complex on S × S′. Hence, by [HS05, Thm. 4.3], S and S′ have Hodge
isogenous (twisted) transcendental lattices.

4. A pfaffian containing a plane

In this section, we prove the final claim of Theorem A by exhibiting a smooth pfaffian cubic
fourfold X containing a good plane, having a tangent conic, and such that A(X) has rank 3.
Indeed, by Propositions 2 and 6, such an X has nontrivial Clifford invariant and is in the τ = 0
(that is, dX = 32) component of C8 ∩C14. In particular, the pfaffian locus nontrivially intersects,
and hence is dense in (since it is open in C14), the component Cτ with τ = 0.

Theorem 9. Let A be the 6× 6 antisymmetric matrix

0 y + u x+ y + u u z y + u+ v
0 x+ y + z x+ z + u+ w y + z + u+ v + w x+ y + z + u+ v + w

0 x+ y + u+ w x+ y + u+ v + w x+ y + z + v + w
0 x+ u+ v + w x+ u+ w

0 z + u+ w
0


of linear forms in Q[x, y, z, u, v, w] and let X ⊂ P5 be the cubic fourfold defined by the vanishing
of the pfaffian of A:

(x− 4y − z)u2 + (−x− 3y)uv + (x− 3y)uw + (x− 2y − z)vw − 2yv2 + xw2

+ (2x2 + xz − 4y2 + 2z2)u+ (x2 − xy − 3y2 + yz − z2)v + (2x2 + xy + 3xz − 3y2 + yz)w

+ x3 + x2y + 2x2z − xy2 + xz2 − y3 + yz2 − z3.

Then:

(i) X is smooth, rational, and contains the plane P = {x = y = z = 0}.
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(ii) The discriminant divisor D ⊂ P2 of the quadric surface bundle π : X̃ → P2 is the sextic
curve given by the vanishing of

d = x6 + 6x5y + 12x5z + x4y2 + 22x4yz + 28x3y3 − 38x3y2z + 46x3yz2 + 4x3z3

+ 24x2y4 − 4x2y3z − 37x2y2z2 − 36x2yz3 − 4x2z4 + 48xy4z − 24xy3z2

+ 34xy2z3 + 4xyz4 + 20y5z + 20y4z2 − 8y3z3 − 11y2z4 − 4yz5 .

This curve is smooth; in particular, π has simple degeneration and the discriminant cover
is a smooth K3 surface S of degree 2.

(iii) The conic C ⊂ P2 defined by the vanishing of x2 + yz is tangent to the degeneration divisor
D at six points (five of which are distinct).

(iv) The K3 surface S has (geometric) Picard rank 2.

In particular, the Clifford invariant of X is geometrically nontrivial.

Proof. An application of the jacobian criterion shows that X and D are smooth. The inclusion
P ⊂ X is checked by inspecting the expression for pf(A); every monomial is divisible by x, y
or z. Rationality comes from being a pfaffian cubic fourfold. Smoothness of D and X implies
that π has simple degeneration; see [HVV11, Rem. 7.1] or [ABB13, Prop. 1.6]. This proves parts
(i) and (ii).

For part (iii), we write the equation for the degeneration divisor as d = (x2 +yz)f+g2, where

f = x4 + 6x3y + 12x3z + x2y2 + 21x2yz − 25x2z2 + 28xy3

− 24xy2z + 34xyz2 + 4xz3 + 20y4 − 5y3z − 8y2z2 − 11yz3 − 4z4 ,

g = 2xy2 + 5y2z − 5x2z .

Hence the conic C ⊂ P2 defined by x2 + yz is tangent to D along the zero-dimensional scheme
of length 6 given by the intersection of C and the vanishing locus of g.

For part (iv), the surface S is the smooth sextic in P(1, 1, 1, 3) = ProjQ[x, y, z, w] given by
w2 = d(x, y, z), which is the double cover of P2 branched along D. In these coordinates, the
discriminant cover f : S → P2 is simply the restriction to S of the projection P(1, 1, 1, 3) 99K P2

away from the hyperplane {w = 0}. Let C ⊂ P2 be the conic from part (iii). As discussed in
Corollary 3, the curve f∗C consists of two (−2)-curves C1 and C2. These curves generate a
sublattice of NS(S) of rank 2. Hence ρ(S) > ρ(S) > 2, where S = S ×Q C.

We show next that ρ(S) 6 2. Write Sp for the reduction mod p of S and Sp = Sp×Fp Fp. Let
` 6= 3 be a prime and write φ(t) for the characteristic polynomial of the action of the absolute
Frobenius on H2

ét(S3,Q`). Then ρ(S3) is bounded from above by the number of roots of φ(t) that
are of the form 3ζ, where ζ is a root of unity [vLui07, Prop. 2.3]. Combining the Lefschetz trace
formula with Newton’s identities and the functional equation that φ(t) satisfies, it is possible to
calculate φ(t) from the knowledge of #S(F3n) for 1 6 n 6 11; see [vLui07] for details.

Let φ̃(t) = 3−22φ(3t), so that the number of roots of φ̃(t) that are roots of unity gives an
upper bound for ρ(S3). Using Magma, we compute

φ̃(t) =
1

3
(t−1)2(3t20+t19+t17+t16+2t15+3t14+t12+3t11+2t10+3t9+t8+3t6+2t5+t4+t3+t+3) .

The roots of the degree 20 factor of φ̃(t) are not integral, and hence they are not roots of unity.
We conclude that ρ(S3) 6 2. By [vLui07], we have ρ(S) 6 ρ(S3), so ρ(S) 6 2. It follows that S
(and S) has Picard rank 2. This concludes the proof of part (iv). Finally, the nontriviality of the
Clifford invariant follows from Proposition 2 and Corollary 3.
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A satisfying feature of Theorem 9 is that we can write out a representative of the Clifford
invariant of X explicitly, as a quaternion algebra over the function field of the K3 surface S.
We first prove a handy lemma, of independent interest for its arithmetic applications (see, for
example, [HV13, HVV11]).

Lemma 10. Let K be a field of characteristic 6= 2 and let q be a nondegenerate quadratic form of
rank 4 over K with discriminant extension L/K. For 1 6 r 6 4 let mr denote the determinant of
the leading principal r × r minor of the symmetric Gram matrix of q. Then the class β ∈ Br(L)
of the even Clifford algebra of q is the quaternion algebra (−m2,−m1m3).

Proof. On n×n matrices M over K, symmetric gaussian elimination is the following operation:

M =

(
a vt

v A

)
7→
(
a 0
0 A− a−1vvt

)
,

where a ∈ K×, v ∈ Kn−1 is a column vector, and A is an (n − 1) × (n − 1) matrix over K.
Then m1 = a and the element in the first row and column of A− a−1vvt is precisely m2/m1. By
induction, M can be diagonalized, using symmetric gaussian elimination, to the matrix

diag(m1,m2/m1, . . . ,mn/mn−1) .

For q of rank 4 with symmetric Gram matrix M , we have

q = 〈m1〉 ⊗ 〈1,m2,m1m2m3,m1m3m4〉 ,

so that over L = K(
√
m4), we have q⊗K L = 〈m1〉⊗〈1,m2,m1m3,m1m2m3〉, which is similar to

the norm form of the quaternion L-algebra with symbol (−m2,−m1m3). Thus the even Clifford
algebra of q is Brauer equivalent to (−m2,−m1m3) over L.

Proposition 11. The Clifford invariant of the fourfold X of Theorem 9 is represented by the
unramified quaternion algebra (b, ac) over the function field of the K3 surface S, where

a = x− 4y − z , b = x2 + 14xy − 23y2 − 8yz ,

and

c = 3x3 + 2x2y − 4x2z + 8xyz + 3xz2 − 16y3 − 11y2z − 8yz2 − z3 .

Proof. Projecting with center the plane P , we obtain a quadratic form (O3
P2⊕OP2(−1), q,OP2(1))

of rank 4 over P2 associated with the quadric bundle π : X̃ → P2; see [HVV11, § 4.2] or
[Kuz10, § 4] for the computation of the Gram matrix. Since S is regular, Br(S) → Br(k(S))
is injective; see [AG60] or [Gro68, Cor. 1.10]. By the functoriality of the Clifford algebra, the
generic fiber β⊗S k(S) ∈ Br(k(S)) is represented by the even Clifford algebra of the generic fiber
q ⊗P2 k(P2). Thus we can perform our calculations in the function field k(S). In the notation of
Lemma 10, we have m1 = 2a, m2 = −b, and m3 = −2c, and the formulas follow immediately.

Remark 12. Contrary to the situation in [HVV11], the transcendental Brauer class β ∈ Br(S)
is constant when evaluated on S(Q); this suggests that arithmetic invariants do not suffice to
witness the nontriviality of β in this case. Indeed, using elimination theory, we find that the odd
primes p of bad reduction of S are 5, 23, 263, 509, 1117, 6691, 3342589, 197362715625311, and
4027093318108984867401313726363. For each odd prime p of bad reduction, we compute that
the singular locus of Sp consists of a single ordinary double point. Thus by [HV13, Prop. 4.1 and
Lemma 4.2], the local invariant map associated with β is constant on S(Qp) for all odd primes
p of bad reduction. By an adaptation of [HV13, Lemma 4.4], the local invariant map is also
constant for odd primes of good reduction.
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At the real place, we prove that S(R) is connected, hence the local invariant map is constant.
To this end, recall that the set of real points of a smooth hypersurface of even degree in P2(R)
consists of a disjoint union of ovals (that is, topological circles, each of whose complement
is homeomorphic to a union of a disk and a Möbius band, in the language of real algebraic
geometry). In particular, P2(R)rD(R) has a unique nonorientable connected component R. By
graphing an affine chart of D(R), we find that the point (1 : 0 : 0) is contained in R. We compute
that the map projecting from (1 : 0 : 0) has four real critical values, hence D(R) consists of two
ovals. These ovals are not nested, as can be seen by inspecting the graph of D(R) in an affine
chart. The Gram matrix of the quadratic form, specialized at (1 : 0 : 0), has positive determinant,
hence by local constancy, the equation for D is positive over the entire component R and negative
over the interiors of the two ovals (since D is smooth). In particular, the map f : S(R)→ P2(R)
has empty fibers over the interiors of the two ovals and nonempty fibers over R ⊂ P2(R), where
it restricts to a nonsplit unramified cover of degree 2, which must be the orientation double cover
of R since S(R) is orientable (the Kähler form on S defines an orientation). In particular, S(R)
is connected.

This shows that β is constant on S(Q). We believe that the local invariant map is also constant
at the prime 2, though this must be checked with a brute force computation.
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